
BESWAC: Boosting Exact Synthesis via
Wiser SAT Solver Call
Sunan Zou, Jiaxi Zhang, Bizhao Shi, Guojie Luo

School of Computer Science, Peking University, Beijing, China
Center for Energy-efficient Computing and Applications, Peking University, Beijing, China

{zousunan, jxzhang, bshi, gluo}@pku.edu.cn

Abstract—SAT-based exact synthesis is a critical technique in
logic synthesis to generate optimal circuits for given Boolean
functions. The lengthy trial-and-error process limits its applica-
tion in on-the-fly logic optimization and optimal netlist library
construction. Previous research focuses on reducing the execution
time of each trial. However, unnecessary SAT solver calls and
varying execution times among encoding methods remained issues.
This paper presents BESWAC to boost exact synthesis from the
flow level. It leverages initial value prediction, encoding method
selection, and an optional early exit to call SAT solvers efficiently
and wisely. Moreover, BESWAC can seamlessly integrate existing
acceleration methods focusing on individual trials. Experimental
results show that BESWAC achieves a 1.79x speedup compared
to state-of-the-art exact synthesis flows.

Index Terms—Logic synthesis, Exact synthesis, SAT problem

I. INTRODUCTION

Exact synthesis tries finding a circuit to implement given
Boolean functions with minimum resources. Targeted resources
can be the circuit’s size or depth, and we only consider size
in this paper. It has many applications in electronic design au-
tomation (EDA), like logic optimization [1], NPN matching [2],
and synthesis for emerging technologies [3]. SAT-based exact
synthesis [4] applies a trial-and-error flow, as in Figure 1a. Each
trial asks: “Is there a netlist N that can implement function
f with r resources?” We formulate the question as a SAT
problem and send it to a SAT solver. r is initially set to 0
and gradually increased. The flow stops when the SAT solver
finds a satisfiable assignment, resulting in an optimal circuit.

Due to the complexity of exact synthesis, the execution time
increases double-exponentially as the number of inputs grows.
Therefore, optimal netlist libraries for logic optimization are
limited to 5-input functions and some 6-input functions [4].
Furthermore, on-the-fly logic optimization methods using exact
synthesis are hindered by unpredictable and time-consuming
execution [1]. This situation signifies the need to boost the
process by reducing execution time, especially for on-the-fly
applications.

The critical point is to reduce the largest portion of the total
execution time: the SAT-solving process. Previous efforts focus
on two primary strategies from a trial-level view: 1) Offer
additional information to SAT solvers: Providing additional
information to SAT solvers shrinks the search space and speeds
up the solving process. This includes informative symmetry-
breaking clauses [5], [6] or encoding topology information [4],
[7]. 2) Improve SAT solvers: Enhancing SAT solving [8]
enables faster completion of each round of questioning.

Boolean Function

Generate CNF
Encoding

(Initial r = 0)

SAT Solver

Decode CNF

Optimal Circuit

SAT

U
N

SA
T

r+
+

Ti
ra

l-a
nd

-e
rr

or
 F

lo
w

(a)

Enhance
Exact

Synthesis

Improve
Solver

Reduce
Search
Space

Call
Solver
Wisely

(b)

Figure 1: (a) SAT-based exact synthesis flow; (b) Classification
of current methods of boosting SAT-based exact synthesis.

However, an untapped optimization area lies in the trial-
and-error flow of exact synthesis: “How to call SAT solver
wisely?” as in Figure 1b. By reducing unnecessary trials and
making wiser ones, we can optimize exact synthesis in a
flow-level view. Substantial improvements can be achieved by
reducing the number of SAT solver calls and selecting the fitting
encoding. This new direction targets flow-level optimization
and is independent and complementary to the existing ones.

Therefore, we propose BESWAC, a flow-level optimization
system for exact synthesis. It incorporates three key techniques:
1) Initial Value Prediction: This technique reduces the number
of SAT solver calls using circuit lower bounds as the initial
value, supported by relevant works and proofs. 2) Encoding
Method Selection: This technique selects a suitable encoding
method for specific Boolean functions. It extracts informative
features from the Boolean functions and uses a concise machine
learning (ML) model to make informed decisions. 3) Optional
Early Exit: This strategy allows timely abandonment of partic-
ularly challenging SAT solver trials based on empirical rules,
thereby saving time with seldom quality loss.

In evaluations on 4-input, 5-input, and 6-input Boolean
functions, BESWAC achieved an average 1.79× performance
speedup compared to the original exact synthesis flow. The en-
coding selection technique alone provided a 1.59× performance
speedup. While the initial value prediction and optional early
exit speedups of 1.11× and 1.34×, respectively.

II. BACKGROUND AND MOTIVATION

SAT-based exact synthesis identifies the optimal netlist to im-
plement a specified Boolean function F . Let F=(f1, ..., fm) :

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA

	

0%

20%

40%

60%

80%

100%

4-input 5-input 6-input
Successful Trial
Unsuccessful Trials

(a)

0%

20%

40%

60%

80%

100%

r=5 r=6 r=7 r=8

UNSAT SAT

(b)

E
xe

cu
tio

n
Ti

m
e

(m
s)

106

105

104

103

102

1 2 3 4 5 6 7 8 9
r

(c)

8.5 8.7 10.8 25.0

6.2 8.3 18.5 9.4

2.3 1.9 0.1 0.3

SSV

MSV

DITT

Sym1 Sym2 Sym3 Sym4

(d)

1 1.36 1.25

1.24 1.37 1

1.84 1 1.40

SSV

MSV

DITT

f1 f2 f3

11966
1398
0

1070
0

1484
0

1416
2 8579

2210
5

1029
5

1202
9

SSV

MSV

DITT

f1 f2 f3

(e)

Figure 2: Execution time profiling of exact synthesis: (a) Ratio of successful and unsuccessful trials; (b) Ratio of SAT and UNSAT
trials; (c) Trend as r increases; (d) Ratio of best-performance cases achieved by the combinations of encoding (SSV, MSV, and
DITT) and symmetry-breaking (Sym1-4) methods. (e) The variance between functions (f1-3) using different encodings.

{0, 1}n→{0, 1}m be a Boolean function with n inputs
(x1, x2, ..., xn) and m outputs. Exact synthesis generates a
Boolean chain (xn+1, ..., xn+r), where xi=oi(xj(i), xk(i)) with
j(i)<k(i)<i, and oi can implement any 2-input Boolean func-
tion. When it is feasible to implement F within r gates, we have
1≤l(k)≤n+r for all 1≤k≤m such that fk=xl(k). Figure 1a
illustrates the general flow of SAT-based exact synthesis. A
Boolean function is encoded into conjunctive normal format
(CNF) with initial resource constraint r=0. Then, a solving trial
loop is executed, and r increments by one unit each round until
a satisfiable assignment exists. Finally, decoding the assignment
generates the targeted optimal circuit. Alternatively, r can be
initialized with an upper bound and gradually decreased [9].

The exact synthesis problem has various encoding methods,
including Single Selection Variable (SSV), Multiple Selection
Variable (MSV), and Distinct Input Truth Tables (DITT).
Additionally, symmetry-breaking methods such as only non-
trivial steps (N), use all steps (A), no replication of operands
(R), co-lexicographically ordered steps (C), lexicographically
ordered operands (O), and ordered symmetric variables (S) can
help SAT solvers find conflicting clauses faster. Due to space
limitations, we do not delve into the details of these methods in
this paper. Interested readers can refer to the summary [4] by
Haaswijk et al. Each Boolean function has a suitable encoding
method, which we will discuss later.

Exact synthesis flow has several parameters significantly
influencing the execution time, like initial value, encoding, and
symmetry-breaking methods. Choosing an optimal combination
of these parameters is non-trivial. We conducted extensive
profiling experiments to understand their effects on execution
time. Our investigations aim to determine the computational
cost of unsatisfiable trials and the influence of the encoding
method. The insights gained will guide efficient and effective
SAT-solver calls during exact synthesis. We tested 1,000 ran-
domly selected 4-input and 5-input Boolean functions using the
ParKissat solver [8] and various encoding methods.

Figure 2a shows that trials on unsatisfiable r values account
for over 50% of the total execution time, even up to 90%
in some instances. We also analyzed the execution time trend
with increasing r values using MSV encoding on sampled 4-
input and 5-input Boolean functions (Figure 2c). SAT solver
execution time typically lacks a strong correlation with the

number of variables or clauses. However, a consistent trend ex-
ists in this specific problem: the growth in execution time slows
after taking the logarithm as r increases. These observations
indicate that initial value prediction can reduce unsatisfiable
trials, saving substantial time. Furthermore, unsatisfiable trials
took significantly longer than satisfiable ones (Figure 2b),
with the last successful trial usually taking less time than
the preceding unsuccessful one. Therefore, it is possible to
differentiate challenging UNSAT trials by empirical rules and
abandon them early.

We also evaluated the impact of encoding methods using
sampled 4-input functions. Figure 2d shows the distribution
of Boolean functions performing best with each encoding
method. It indicates that optimal encoding varies by function;
no single method is universally superior. Encoding method
selection based on each Boolean function’s unique charac-
teristics has great potential to reduce total execution time.
Figure 2e illustrates significant variations in execution time for
different encoding methods with the same r, with each cell
representing the time relative to the optimal method. The only
variable causing such a significant difference in execution time
is the Boolean function. The experiment further emphasizes
that choosing a suitable encoding method for a specific Boolean
function could effectively reduce the exact synthesis execution
time.

III. METHODS

A. Overview

Based on the observations above, we propose BESWAC to
boost exact synthesis from the flow level, as in Figure 3. It
encompasses three essential modules: initial value prediction,
encoding selection, and optional early exit. These modules
boost the original flow (the dotted rectangle) by making wiser
decisions when invoking SAT solvers. BESWAC accepts a
Boolean function F and computes an initial lower bound r0
based on F ’s characteristics, combining general and specific
bounds. Then, the encoding selection module extracts F ’s
representative features and leverages a multilayer perceptron
(MLP) to determine the suitable encoding method for F . The
encoder in BESWAC uses the initial value and the chosen en-
coding to trigger the original exact synthesis flow. An optional
and aggressive early exit module uses empirical heuristics to

Encoder

F=

{

{
0,
1,
1,
...,
1,
0,
1

Ta
rg

et
 B

oo
le

an
 F

un
ct

io
n

… … …… …

Feature Extraction

Initial Value Prediction

𝑛 − 1

2 !"# $ % &'…

Basic

Special

SAT Solver

Initial r

SSV/MSV/DITT

r=r+1

U
N

SA
T

SAT

Optimal
Circuit

original exact synthesis flow

Remove Trivial Inputs
Early Exit

(Sec. III-B)

(Sec. III-D)

Encoding Method Selection
(Sec. III-C)

Figure 3: The framework of BESWAC powered by 1) initial value prediction, 2) encoding selection, and 3) optional early exit.

evaluate the hardness of encoding. It abandons identified hard
trials early if the execution time exceeds a heuristic threshold.
This optional module speeds up exact synthesis at the potential
cost of quality, which rarely happens in our experiments.

By accurately determining r0, BESWAC minimizes trials on
infeasible resource values, reducing unnecessary SAT solver
calls. The suitable encoding method boosts solver efficiency
and speed for all trials. The optional early exit strategy further
cuts redundant SAT solver calls, reducing computation time
without noticeably impacting result quality.

B. Initial Value Prediction

Exact synthesis targets the realization of a specific Boolean
function using minimum resources. During each trial round, the
available resource r increases unit by unit. The total execution
time depends on the cumulative trials across all rounds. Reduc-
ing trials can decrease execution time, as detailed in Section II.
Predicting an initial value can help avoid unproductive trials.
Circuit lower bounds are well-studied. Most findings focus
on circuits under specific constraints, diverging from general
exact synthesis [10]–[12]. These application-specific bounds
from existing methods are termed special bounds. To adapt
general exact synthesis cases, we propose a general basic lower
bound, termed the basic bound. We use the basic lower bound
as the initial value, supplemented by special bounds for specific
functions and constraints.

We classify special bounds into two classes. The first type
deals with circuits with only AND , OR, and NOT gates [10].
These constraints help generate an optimal circuit library for
And-Inverter Graphs (AIGs) rewrite, a potent logic optimization
algorithm [13]. AIG describes a circuit with only AND and
NOT gates. Rewrite substitutes subgraphs in AIG with pre-
computed ones in the optimal library to reduce the size and
depth. The second type is function-specific, like parity or
majority [11]. Special bounds often yield more significant
results and time savings than basic bounds and are applied
prior to basic ones if feasible.

In order to accommodate a broader range of scenarios, we
apply a general basic lower bound. Assuming Boolean function
F (x1, x2, ..., xn) has n primary inputs and a primary output of .
We call F non-trivial if each xi affects the value of of and all

xi are not logically equivalent. The primary output of of F
needs to collect signals from all inputs (x1, x2, ..., xn). The
most efficient is using a complete binary tree T , regarding all
inputs (x1, x2, ..., xn) as leaf nodes. Any other structure will
induce at least one path(s) connecting certain xi to of , and the
number of gates will increase if not equal. Furthermore, T has
no 1-degree node since we can always shrink a 1-degree node
to its parent without reducing the number of leaf nodes. The
minimum gates to implement F is no less than the number of
non-leaf nodes in T , bn/2c+ dn/2e2 ×2−1 = n−1. Therefore,
implementing non-trivial F requires a minimum of n−1 gates.
This lower bound can potentially reduce overall execution time.

BESWAC analyzes the truth table of the Boolean function
and selects the strongest applicable lower bound, rb, from the
available options. We initialize the value r as rb instead of 0 for
the first trial. This approach reduces the number of unsuccessful
trials, resulting in a more efficient synthesis process with
fewer invocations of the SAT solver. As a result, the execution
time is significantly reduced. This boosting technique is nearly
overhead-free since these lower bounds can be calculated in
constant time complexity. The effectiveness of this technique
is validated through experiments in Section IV.

C. Encoding Method Selection

Multiple approaches exist for encoding exact synthesis prob-
lems as SAT problems, each with trade-offs regarding variables
and clauses. For example, MSV encoding involves fewer vari-
ables but more clauses, while SSV encoding follows the op-
posite pattern. The choice of encoding and symmetry-breaking
methods for a given Boolean function can impact execution
time greatly, as discussed in Section II. The sole variable in this
execution time variation is the Boolean function itself. Thus,
selecting the appropriate encoding method for each function is
crucial for reducing overall execution time. However, manually
classifying numerous functions into the sea of encoding and
symmetry-breaking combinations simply by experience alone
is impractical.

We propose leveraging machine learning to select the ap-
propriate encoding method for Boolean functions. There are
two primary reasons for adopting machine learning in this
context: 1) When provided with informative features, machine

011

110

100000

001

010

111

101

(a)

011

110

100000

001

010

111

101

(b)

011

110

101

100000

001

010

111

(c)

011

110

100000

001
010

111

101

(d)

Figure 4: (a) Boolean hypercube of 3-input Majority function;
(b) Co-factor (setting input x2 to 1): the orange face; (c)
Sensitivity (input pattern 010): the orange point; (d) Influence
of input x2: the orange and grey face.

learning excels in classification tasks. 2) Ample training data
are available for functions with no less than four inputs. We
can train a model on a subset of these functions to accelerate
the encoding method selection process.

The classification ability of the ML model greatly lies in
feature selection. We represent Boolean functions with three
informative signatures: co-factor, sensitivity, and influence, as
illustrated in Figure 4. These signatures have proven effec-
tive in classifying NPN functions [14], a similar Boolean
function classification problem. Our feature representation is
an n×(2n−2+3) matrix consisting of an n×2 ordered co-
factor vector (OCV), an n×2n−2 ordered sensitivity vector
(OSV), and an n×1 ordered influence vector (OIV) for n-
input Boolean functions. This matrix captures the face and
point characteristics of the functions, treating each function
as a hypercube, as in Figure 4a. These characteristics reflect
the relationships between output changes and different input
patterns. The features OCV, OSV, and OIV are explained below.

Definition 1 (Ordered co-factor vector, OCV). For a Boolean
function f with n inputs, an ordered co-factor vector is
OCV (f) = {|fz=v| : z ∈ {x1, x2, ..., xn}, v ∈ {0, 1}}≤,
where {}≤ is the sorted multiple-set in non-decreasing order.
fz=v is the number of satisfying count of f when input z is
set to constant v.

Figure 4b shows the count of 1-minterms (orange shadow),
indicating the number of satisfying instances when input x2 is
set to 1. This signature captures the face characteristics within
the Boolean function hypercube.

Definition 2 (Ordered sensitivity vector, OSV). For a Boolean
function f with all input patterns X in its truth table T(f), an
ordered sensitivity vector is OSV (f) = {sen(f,X) : X ∈
{0, 1}n}≤. sen(f,X) = |i : f(X) 6= f(Xi)| is the number
of input literals that are sensitive for input pattern X , where
f(Xi) means negating the i-th variable in X .

Figure 4c shows the sensitivity for the input pattern 011.
This signature captures the point characteristics of the Boolean
function in hypercube. Trivial inputs that do not affect the
function’s output can be identified if negating an input does
not alter the output across all input patterns.

Definition 3 (Ordered influence vector, OIV). We denote the
ordered influence vector as OIV (f) = {inf(f, z) : z ∈
{x1, x2, ..., xn}}≤. inf(f, i) is the influence of input xi, which
is defined as 1

2n |f(X) 6= f(Xi) : X ∈ {0, 1}n|.
The ordered influence vector models the sensitivity proba-

bility at xi for input pattern X . It provides insights into the
sensitivity relationship between opposing faces, as shown in
Figure 4d. This signature captures the characteristics of the
function hypercube’s faces and points.

As encoding selection is a simple classification task, we
employ a concise and lightweight model to select encoding for
each Boolean function based on extracted features. We choose
the MLP model with three 64-neuron internal layers. The first
two layers use the Rectified Linear Unit (ReLU) activation
function, and the third uses softmax. We set the learning rate to
0.02, the dropout rate to 0.2, the batch size to 32, and use Cross
Entropy [15] as a loss function. We present two models in this
paper: BESWAC-EF, which chooses a combination of encoding
and symmetry-breaking methods, and BESWAC-EC, which
focuses solely on identifying the suitable encoding method.
Though lightweight, the MLP model achieves high accuracy,
as validated by experiments in Section IV. The training process
for this simple model converges quickly within a few hundred
iterations. During inference, feature extraction takes negligible
time compared to the SAT solver. By selecting the suitable
encoding method, SAT solvers can operate more wisely and
effectively than the original flow. This technique significantly
accelerates the entire process while adding negligible execution
time.

D. Early Exit

Section II reveals that UNSAT trials significantly contribute
to the overall execution time. UNSAT trials cannot yield useful
results, and it is intuitive to abandon such trials if possible. For
exact synthesis, we identified empirical rules to detect challeng-
ing CNFs that cause long execution. We propose BESWAC-
R, an optional early exit technique leveraging these empirical
rules. When a CNF is identified as difficult, we immediately
exit the SAT solver call and increment r for subsequent trials.
BESWAC-R is an aggressive acceleration technique that may
introduce suboptimality, though such occurrences were rare
in our experiment. While BESWAC-R may deviate from the
“exact” synthesis process by using more resources, the benefits
of accelerated execution through early exiting are significant.
Users can adjust this trade-off according to their requirements.

Our empirical rule considers two metrics: the ratio of CNF
variables to clauses (RCV = #clauses

#variables) and an execution time
threshold (tm). Previous research [16] suggests that CNFs on
the boundary between SAT and UNSAT with 4.15 ≤ RCV ≤
4.55 are challenging to solve. However, for exact synthesis
problems, we find CNFs with RCV ranging from 2.3n−5
to 2.35n+7 are hard to solve, where n is the input size. If
a CNF falls within this range and the solving time exceeds
the threshold tm, we terminate the SAT solver to reduce

Encoding 4-input 5-input 6-input
RCV tm RCV tm RCV tm

SSV [24, 30] 200ms [55, 70] 1.2× 104s [135, 150] 2.2× 105s
MSV [28, 43] 180ms [85, 135] 1.1× 104s [230, 280] 1.6× 105s
DITT [30, 50] 240ms [75, 145] 2.3× 104s [185, 215] 3.7× 105s

Table I: Fine-grained empirical thresholds RCV and tm.

Relative
Execution Time

4SSV
NARCOS

4MSV
NARC

4DITT
NARCS

5SSV
NARCOS

5MSV
NARC

5DITT
NARCS

6SSV
ARCS

6MSV
NARCS

6DITT
NARCS

Average
Speedup

Original Flow 1.00
(478ms) 1.10 1.11 1.08 1.00

(1.67E4s) 1.89 1.72 1.00
(1.10E5s) 3.54 1.00×

BESWAC-I 0.80 0.83 0.84 1.07 0.86 1.86 1.69 0.97 3.51 1.11×
BESWAC-E 0.87 0.48 0.53 1.59×
BESWAC 0.72 (1.39× Speedup) 0.43 (2.33× Speedup) 0.52 (1.92× Speedup) 1.79×

BESWAC-R
(Optional) 0.97 1.06 1.05 0.58 0.55 1.04 1.24 0.73 2.51 1.34×

Table II: Relative execution time of BESWAC and other exact synthesis flows.

SSV (S) NARCS (1) NARCOS (2) ARCS (3)
NOS (4) NARCO (5) ARS (6)

MSV (M) NARCS (1) NARCOS (2) NARC (3)
AOS (4) NARS (5) NACOS (6)

DITT (D) NARCS (1) NRCS (2) AO (3)
NCOS (4) NCO (5) NRS (6)

Table III: Encoding symbols and symmetry-breaking method
symbols.

Inputs Encoding Symmetry-Breaking Symbols Ave.
Symbols 1 2 3 4 5 6

4-input
S 20.3% 20.3% 20.2% 21.7% 22.4% 21.9%

22.9%M 24.8% 24.7% 24.2% 23.9% 24.2% 24.4%
D 24.8% 24.7% 20.2% 24.3% 24.0% 20.3%

5-input
S 8.3% 12.7% 9.5% 2.8% 1.8% 1.6%

5.8%M 11.9% 6.3% 14.3% 4.5% 3.1% 7.9%
D 1.6% 5.4% 0.8% 5.3% 7.4% 0.2%

6-input
S 2.2% 1.9% 1.8% 0.3% 0.1% 0.6%

1.4%M 3.1% 2.5% 7.4% 0.8% 0.7% 0.1%
D 0.6% 1.1% 0.9% 0.1% 0.3% 0.4%

Table IV: Execution time reduction by initial value prediction.

overall execution time. The chosen threshold values are tm =
250ms, 2.6× 104s, 3.4× 105s for 4-input, 5-input, and 6-input
functions respectively. The threshold may vary depending on
the SAT solver and machine performance. Skipped trials that
meet the early exit criteria require significantly more time than
other cases. In addition to generally applied rules (BESWAC-
RC), we also design fine-grained rules (BESWAC-RF) for
different encoding methods of Boolean functions, as detailed
in Table I. Experimental results in Section IV demonstrate the
effectiveness of early exit with tolerable suboptimality.

IV. EVALUATIONS

BESWAC is implemented in C++ and Python with
ParKissat [8] as the SAT solver. We compare BESWAC
with state-of-the-art exact synthesis flows using encoding and
symmetry-breaking methods, as summarized by Haaswijk et
al. [4]. The benchmark consists of 30,000 randomly selected
Boolean functions each for 4-input, 5-input, and 6-input cate-
gories. For each function, we limit SAT solving for a single
case to 2E07s and rule out cases exceeding the time limit.
All the experiments are evaluated on a server with 2-way
Intel Xeon Gold 6248R CPUs and 512GB DDR4 memory.
It is worth mentioning that we remove topology information
for a fair comparison. However, as discussed in Section I,
BESWAC is orthogonal to existing methods. Therefore, if
desired, previous methods like topology information can be
combined with BESWAC for further acceleration.

Accuracy BESWAC-EC BESWAC-EF
4-input Functions 99.8% 75.7%
5-input Functions 98.4% 78.0%
6-input Functions 96.9% 71.2%

Table V: Accuracy of encoding selection model in BESWAC.

Table II demonstrates the effectiveness of BESWAC in
boosting the exact synthesis flow. It compares BESWAC and
the original exact synthesis flow using encoding and symmetry-
breaking methods with the best performance [4]. BESWAC
significantly reduces the execution time of the exact synthesis
flow. On average, it achieves an average speedup of 1.39×,
2.33×, and 1.92× for 4-input, 5-input, and 6-input functions,
respectively. And the overall speedup reaches 1.79×. This
speedup benefits the on-the-fly rewriting and expedites the
construction of optimal circuit libraries. The three modules
in BESWAC: initial value prediction (BESWAC-I), encoding
selection (BESWAC-E), and optional early exit (BESWAC-R)
contribute to execution time reduction independently, where
only the BESWAC-R may cause rare and tolerable quality
loss. They achieve 1.11×, 1.59×, and 1.34× average speedups,
respectively. In the following evaluations, we further analyze
the effect of each module in detail.

For simplicity, we use the symbols listed in Table III to
represent the combination of encoding and symmetry-breaking
methods. For example, the combination of SSV encoding and
NARCS symmetry-breaking methods is denoted as S-1. We
apply lower bounds in Section III-B to 4-input, 5-input, and
6-input Boolean functions to evaluate initial value prediction.
Results in Table IV demonstrate that BESWAC-I effectively
reduces execution time across all combinations of encoding and
symmetry-breaking methods. On average, BESWAC-I saves
22.9%, 5.8%, and 1.4% time for 4-input, 5-input, and 6-input
functions, respectively. The best results reach up to 24.8%,
14.3%, and 7.4%, highlighting the effectiveness of initial value
prediction in reducing execution time.

For encoding selection, we select the combinations of en-
coding and symmetry-breaking methods listed in Table III as
candidates. The ranks of sampled execution time using these
encoding methods work as the ground truth for the encoding
selection model. The Boolean functions are divided into train-
ing and testing sets randomly and exclusively. The training set
contains 4,000 functions for each input size, a small proportion
of all Boolean functions. The training process from scratch
converges within 4 hours. Table V shows that BESWAC-EF and
BESWAC-EC accurately predict suitable encoding methods for
Boolean functions, with an average accuracy of over 71% and

0

10

20

30

B 1 2 3 4 5 6 B 1 2 3 4 5 6 B 1 2 3 4 5 6

0

5

10

15

20

B 1 2 3 4 5 6 B 1 2 3 4 5 6 B 1 2 3 4 5 6

SSV MSV DITT
BESWAC-EF (B)
Encoding Method

413ms

8.1×103s

5.8×104s

0
0.5
1
1.5
2
2.5

B 1 2 3 4 5 6 B 1 2 3 4 5 6 B 1 2 3 4 5 6

R
el

at
iv

e
E

xe
cu

tio
n

Ti
m

e

4-
in

pu
t

5-
in

pu
t

6-
in

pu
t

(a) Fine-grained selection.

0 9 18

B

DITT

MSV

SSV

6-input

3.7×105s

4-input

0 5 10

B

DITT

MSV

SSV

5-input

2.4×104s

Relative Execution Time
0 1 2

B

DITT

MSV

SSV

627ms

BESWAC-EC (B)
Encoding Method

(b) Coarse-grained selection.

Figure 5: Boosting effect of encoding selection in BESWAC.

Inputs BESWAC-RC BESWAC-RF
Time Saved r1 r2 Time Saved r1 r2

4-input 2.5% 4.5% 2.0% 4.1% 3.8% 2.7%
5-input 21.7% 3.6% 2.8% 46.2% 2.3% 1.7%
6-input 37.5% 3.9% 1.3% 26.9% 3.3% 1.4%

Table VI: Results of early exit technique in BESWAC.

96%, respectively. Accurate selection helps reduce execution
time in the exact synthesis flow, as shown in Figure 5. On av-
erage, BESWAC-EF achieves a speedup of 1.16×, 2.07×, and
1.89× for 4-input, 5-input, and 6-input functions, respectively,
compared with best-performance combinations. The coarse-
grained version BESWAC-EC (no symmetry-breaking clauses)
achieves a speedup of 1.16×, 2.06×, and 2.90×. The results
affirm BESWAC’s informative feature design and effective
encoding selection, which enables wiser SAT solver calls.

We sampled 500 functions for optional early exit to build
the RCV and tm parameters. We test coarse-grained empirical
rules (BESWAC-RC) and fine-grained rules (BESWAC-RF)
with results in Table VI. On average, BESWAC-RC saves
2.5%, 21.7%, and 37.5% time for 4-input, 5-input, and 6-
input functions, respectively, while BESWAC-RF performs

even better with time savings of 4.1%, 46.2%, and 26.9%.
For this optional technique, the maximum quality loss was two
gates, with r1 = 4.6% and r2 = 2.8% for BESWAC-RC, where
ri means an i-unit loss compared to optimal results. Fewer
circuits experience losses when using fine-grained rules, with
r1 = 3.8% and r2 = 2.7%. Users can consider this technique,
weighing time savings against potential but rare quality loss.

V. CONCLUSION

In this paper, we propose BESWAC to boost the exact
synthesis framework at the flow level by reducing the execution
time of the trial-and-error flow. It consists of three key modules:
initial value prediction to reduce SAT solver calls, encoding
selection to offer instance-specific solver-friendly encoding, and
optional early exit to abandon hard trials timely. These modules
improve the efficiency of the exact synthesis process, benefiting
faster optimal library generation and on-the-fly rewrite for logic
synthesis. Evaluations demonstrate that BESWAC achieves an
average speedup of 1.79× compared to the original flow. Be-
sides, BESWAC is orthogonal to the existing boosting methods,
making it a practical addition to the exact synthesis flow.

ACKNOWLEDGEMENT

This work was partly supported by the National Nat-
ural Science Foundation of China (Grant No. 62090021)
and the National Key R&D Program of China (Grant No.
2022YFB4500500).

REFERENCES

[1] H. Riener et al., “On-the-fly and DAG-aware: Rewriting Boolean net-
works with exact synthesis,” in DATE, 2019.

[2] W. Haaswijk et al., “Classifying functions with exact synthesis,” in
International Symposium on Multiple-Valued Logic (ISMVL), 2017.

[3] X. Wang et al., “MinSC: An exact synthesis-based method for minimal-
area stochastic circuits under relaxed error bound,” in ICCAD, 2021.

[4] W. Haaswijk et al., “SAT-based exact synthesis: Encodings, topology
families, and parallelism,” IEEE TCAD, 2019.

[5] A. Kojevnikov et al., “Finding efficient circuits using SAT-solvers,” in
The International Conference on Theory and Applications of Satisfiability
Testing (SAT). Springer, 2009, pp. 32–44.

[6] D. E. Knuth, The Art of Computer Programming, Volume 4B: Combina-
torial Algorithms. Addison-Wesley Professional, 2022.

[7] X. Ge et al., “Topology-based exact synthesis for majority inverter graph,”
in ISCAS, 2022.

[8] X. Zhang et al., “ParKissat: Random shuffle based and pre-processing
extended parallel solvers with clause sharing,” SAT Competition, 2022.

[9] Z. Chu et al., “Advanced functional decomposition using majority and
its applications,” IEEE TCAD, 2019.

[10] E. Demenkov et al., “New lower bounds on circuit size of multi-output
functions,” Theory of Computing Systems, 2015.

[11] J. Li et al., “3.1n - o(n) circuit lower bounds for explicit functions,” in
STOC, 2022.

[12] A. Golovnev et al., “Circuit size lower bounds and sat upper bounds
through a general framework,” in International Symposium on Mathe-
matical Foundations of Computer Science (MFCS), 2016.

[13] A. Mishchenko et al., “DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis,” in DAC, 2006.

[14] J. Zhang et al., “Rethinking npn classification from face and point
characteristics of boolean functions,” in DATE, 2023.

[15] Z. Zhang et al., “Generalized cross entropy loss for training deep neural
networks with noisy labels,” in NeurIPS, 2018.

[16] D. Mitchell et al., “Hard and easy distributions of SAT problems,” in
AAAI, 1992.

